2013年12月zsb4的初中数学组卷

导读:菁优网www.jyeoo.com考点:二次函数综合题.专题:综合题;压轴题.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m

2013年12月zsb4的初中数学组卷

菁优网

www.jyeoo.com 考点: 二次函数综合题. 专题: 综合题;压轴题. 分析: (1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解答: 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x+bx+c得:解得:. 22, ∴抛物线解析式为:y=x+2x﹣3. (2)令y=0得:0=x+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,解得:∴M1(﹣1,, ),M2(﹣1,﹣, 2); , ②当MB=BA时,解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6)(不合题意舍去), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在4个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣1)使△ABM为等腰三角形. 点评: 本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. 10.(2013?云南)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?

?2010-2013 菁优网

菁优网

www.jyeoo.com

考点: 解直角三角形的应用-方向角问题. 分析: 过点A作AD⊥BC于D,则垂线段AD的长度为与钓鱼岛A最近的距离,线段CD的长度即为所求.先由方位角的定义得出∠ABC=30°,∠ACD=60°,由三角形外角的性质得出∠BAC=30°,则CA=CB=100海里,然后解直角△ADC,得出CD=AC=50海里. 解答: 解:过点A作AD⊥BC于D,根据题意得 ∠ABC=30°,∠ACD=60°, ∴∠BAC=∠ACD﹣∠ABC=30°, ∴CA=CB. ∵CB=50×2=100(海里), ∴CA=100(海里), 在直角△ADC中,∠ACD=60°, ∴CD=AC=×100=50(海里). 故船继续航行50海里与钓鱼岛A的距离最近. 点评: 本题考查了解直角三角形的应用﹣方向角问题,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线. 11.(2012?衡阳)如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE:ED,单位:m)

考点: 解直角三角形的应用-坡度坡角问题. 分析: 作BF⊥AD于点于F,在直角△ABF中利用勾股定理即可求得AF的长,在直角△CED中,利用坡比的定义即可求得ED的长度,进而即可求得AD的长. ?2010-2013 菁优网

菁优网

www.jyeoo.com 解答: 解:作BF⊥AD于点F.则BF=CE=4m,EF=BC=4.5m. 在Rt△ABF中,AF=在Rt△CED中,根据i=则ED===4m. , ==3m, 则AD=AF+EF+ED=3+4.5+4=(7.5+4答:坝底宽AD为(7.5+4)m. )m. 点评: 本题考查了坡度坡角的问题,把梯形的计算通过作高线转化成直角三角形的计算是解决本题的基本思路. 12.(2010?长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.

考点: 垂径定理的应用;勾股定理. 分析: 过点O作OM⊥DE于点M,连接OD. 根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的两条弧”和勾股定理进行计算. 解答: 解:过点O作OM⊥DE于点M,连接OD. ∴DM=. ∵DE=8(cm) ∴DM=4(cm) 在Rt△ODM中,∵OD=OC=5(cm), ∴OM===3(cm) ∴直尺的宽度为3cm. 点评: 综合运用了垂径定理和勾股定理.

?2010-2013 菁优网

菁优网

www.jyeoo.com 13.(2013?十堰)如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.

(1)求证:⊙O与CB相切于点E;

(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.

考点: 切线的判定与性质;勾股定理;相似三角形的判定与性质. 专题: 计算题;压轴题. 分析: (1)由CA=CB,且CH垂直于AB,利用三线合一得到CH为角平分线,再由OD垂直于AC,OE垂直于CB,利用角平分线定理得到OE=OD,利用切线的判定方法即可得证; (2)由CA=CB,CH为高,利用三线合一得到AH=BH,在直角三角形ACH中,利用勾股定理求出CH的长,由圆O过H,CH垂直于AB,得到圆O与AB相切,由(1)得到圆O与CB相切,利用切线长定理得到BE=BH,如图所示,过E作EF垂直于AB,得到EF与CH平行,得出△BEF与△BCH相似,由相似得比例,求出EF的长,由BH与EF的长,利用三角形面积公式即可求出△BEH的面积;根据EF与BE的长,利用勾股定理求出FB的长,由BH﹣BF求出HF的长,利用锐角三角形函数定义即可求出tan∠BHE的值. 解答: (1)证明:∵CA=CB,点O在高CH上, ∴∠ACH=∠BCH, ∵OD⊥CA,OE⊥CB, ∴OE=OD, ∴圆O与CB相切于点E; (2)解:∵CA=CB,CH是高, ∴AH=BH=AB=3, ∴CH==4, ∵点O在高CH上,圆O过点H, ∴圆O与AB相切于H点, 由(1)得圆O与CB相切于点E, ∴BE=BH=3, 如图,过E作EF⊥AB,则EF∥CH, ∴△BEF∽△BCH, ∴=,即=, =, =, , 解得:EF=∴S△BHE=BH?EF=×3×在Rt△BEF中,BF= ?2010-2013 菁优网

菁优网

www.jyeoo.com ∴HF=BH﹣BF=3﹣=, 则tan∠BHE==2. 点评: 此题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握切线的判定与性质是解本题的关键. 14.(2013?钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=. (1)求⊙O的半径OD;

(2)求证:AE是⊙O的切线; (3)求图中两部分阴影面积的和.

考点: 切线的判定与性质;扇形面积的计算. 专题: 计算题;压轴题. 分析: (1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可; (2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证; (3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可. 解答: 解:(1)∵AB与圆O相切, ∴OD⊥AB, 在Rt△BDO中,BD=2,tan∠BOD=∴OD=3; (2)连接OE, ∵AE=OD=3,AE∥OD, ∴四边形AEOD为平行四边形, ∴AD∥EO, ∵DA⊥AE, ∴OE⊥AC, 又∵OE为圆的半径, ∴AC为圆O的切线;

=, ?2010-2013 菁优网

五星文库wxphp.com包含总结汇报、办公文档、外语学习、教程攻略、党团工作、人文社科、文档下载以及2013年12月zsb4的初中数学组卷等内容。

本文共4页1234